Статика. момент силы
Содержание:
- Как добиться быстрого разгона автомобиля
- Направление величины M¯
- Время пуска электрдвигателя
- Связь с другими величинами
- Схема расположения реле – прерывателей
- Расчет крутящего момента – формула
- Единицы
- Общие сведения
- Единицы
- Основные параметры электродвигателя
- Специальные случаи
- Расчет момента силы
- Раскладываем силу
- Потребляемая мощность электродвигателя
- Как часто нужно выполнять замену?
- Отзывы
- Пара сил.
- Момент силы
- Момент электродвигателя
- Пример решения задачи на нахождение момента инерции
- Какому двигателю отдать предпочтение
- Знак момента силы
- Что мы узнали?
- Тест по теме
- Шаги
- Какое масло заливать в АКП Дастер
- Какие можно сделать выводы по вышесказанному
- Выводы
Как добиться быстрого разгона автомобиля
Подводя небольшой промежуточный итог можно подытожить, что крутящий момент — это крайне важная величина в характеристиках современного автомобиля, от которой напрямую зависит динамика транспортного средства. Если крутящий момент выше, то и лошадиные силы агрегата, размещенного в подкапотном пространстве, становятся заметно сильнее. Также не стоит забывать о том, что при помощи такого параметра, как крутящий момент, определяется заявленная эластичность двигателя. Иными словами, это указывает на продолжительность одинаковых показателей тяги в большом разбросе диапазона оборотов. В частности, многие автомобилисты предпочитают, чтобы самый высокий крутящий момент был на старте, так как это влияет на разгон, что отразится на ускорении автомобиля и его динамике.
По этой причине, для уверенного и резкого старта автомобилистам стоит рассматривать автомобили с дизельными силовыми агрегатами. Такие модели быстро стартуют, а в случае наличия турбокомпрессора и вовсе могут удерживать необходимую тягу вплоть до высоких оборотов. Существенно уступают дизелям стандартные атмосферные бензиновые моторы, которые для лучшего эффекта необходимо раскручивать до трех и выше тысяч оборотов. У двигателей с турбокомпрессорами такой беды нет, правда их крутящий момент также проваливается при достижении определенных показателей на тахометре.
Что же касается лошадиных сил, то они требуются совершенно для другого. С помощью такого термина выражается готовность силового агрегата оказывать сопротивление встречному ветру, а также иным нагрузкам, с которыми будет сталкиваться транспортное средство при последующей повседневной эксплуатации. Здесь необходимо отдать должное, что высокая мощность автомобиля, чаще всего отражается в максимальной скорости авто.
Также необходимо упомянуть, что лошадиные силы — это вполне надежная и проверенная характеристика, которая хоть и устарела, но все еще актуальна, учитывая современные реалии. Тем более, что с помощью данного параметра и применения некоторого хитрого программного обеспечения можно прибавить мощность мотору или наоборот ее снизить. Этим пользуются многие современные автомобильные компании, которые в теории раздувают мощность силового агрегата в своей модели, но по факту будущий автовладелец не замечает существенной отдачи. Именно поэтому количество крутящего момента (Н*м) в маркировке двигателя для очередного транспортного средства значительно важнее, нежели число лошадиных сил, которое заявлено производителем.
Направление величины M¯
Разобравшись, что такое момент силы в физике, необходимо пояснить, куда он направлен. Как известно, результатом векторного произведения является направленный отрезок, перпендикулярный плоскости, в которой лежат исходные вектора. Например, если речь идет о горизонтальном вращающемся диске на вертикальной оси, то M¯ будет направлен вдоль этой оси. Вверх или вниз — это уже зависит от направления действующей силы. Определить это можно по правилу правой руки: направляя четыре пальца правой руки по ходу вектора r¯ к вектору F¯, оттопыренный большой палец покажет, куда действует момент силы.
Существует еще один способ определения направления величины M¯. Для этого следует представить, что если смотреть с конца вектора M¯ на приложенную силу, то система должна поворачиваться против часовой стрелки. Если же она поворачивается по часовой стрелки, значит, момент направлен в противоположную сторону.
Во время решения задач полагают, что если сила создает вращение против часовой стрелки, то такой момент считается положительным, и наоборот.
Время пуска электрдвигателя
Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.
Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:
tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке
n = частота вращения электродвигателя при полной нагрузке
Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.
Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.
Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.
Мизб можно рассчитать по следующим формулам:
Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.
Связь с другими величинами
Схема расположения реле – прерывателей
Расчет крутящего момента – формула
Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.
Расчет онлайн
Для расчета крутящего момента электродвигателя онлайн введите значение мощности ЭД и реальную угловую скорость (количество оборотов в минуту)
тут будет калькулятор
После расчета крутящего момента, посмотрите схемы подключения асинхронных электродвигателей звездой и треугольником на сайте «Слобожанского завода»
Харьков, Полтавский шлях, 56, тел.: +38
2021 Слобожанский электромеханический завод. Все права защищены
Единицы
Момент силы имеет размерность «сила на расстояние» и единицу измерения ньютон-метр в системе СИ. Энергия и механическая работа также имеют размерность «сила на расстояние» и измеряются в системе СИ в джоулях. Следует заметить, что энергия — это скалярная величина, тогда как момент силы — величина (псевдо) векторная. Совпадение размерностей этих величин не случайность: момент силы 1 Н·м, приложенный через целый оборот, совершает механическую работу и сообщает энергию 2π{\displaystyle 2\pi } джоулей. Математически:
- E=Mθ,{\displaystyle E=M\theta ,}
где E{\displaystyle E} — энергия, M{\displaystyle M} — вращающий момент, θ{\displaystyle \theta } — угол в радианах.
Общие сведения
Момент инерции — это свойство тела противостоять изменению скорости вращения. Чем момент инерции выше — тем больше это противостояние. Момент инерции часто сравнивают с понятием массы для прямолинейного движения, так как масса определяет, насколько тело сопротивляется такому движению. Распределение массы по объему тела не влияет на прямолинейное движение, но имеет большое значение при вращении, так как от него зависит момент инерции.
В центробежном регуляторе скорость вращения двигателя контролируется с помощью момента инерции: с достижением определенной скорости количество топлива, подаваемого в двигатель, уменьшается. Двигатель вращает два шара в верней части устройства, и, при увеличении скорости они расходятся, увеличивая момент инерции всего устройства. Когда момент инерции достигает определенной величины, это устройство ограничивает поступление топлива.
Определить момент инерции для тел простой геометрической формы и с постоянной плотностью можно, используя общепринятые формулы. Для тел более сложных форм используют математический анализ. В зависимости от того, как вес распределен внутри тел, два тела с одинаковой массой могут иметь разный момент инерции. Например, момент инерции I для однородного шара, с одинаковой по всему объему плотностью, находят по формуле:
Тут m — это масса шара, а r — его радиус. Если взять два шара одинаковой массы, с радиусом первого вдвое больше радиуса второго, то момент инерции большего шара будет в 2²=4 раза больше первого. В этой формуле радиус — это расстояние от центра вращения до наиболее удаленной от этого центра точки на теле, для которого измеряется момент инерции. Если взять цилиндр с массой m, которая равна массе одного из шаров выше, и с расстоянием L от центра вращения до самой удаленной точки, так что эта величина равна радиусу этого шара, то момент инерции цилиндра I будет равен:
в случае, если цилиндр вращается вокруг его основания. Момент инерции будет равен:
если цилиндр вращается вокруг оси, проходящей через его центр по длине. При таком вращении цилиндр становится похожим на пропеллер. Вторую формулу легко получить из первой: радиус от центра вращения до наиболее удаленной точки равен половине длины цилиндра, но так как этот радиус возведен в квадрат, то 1/2 L (или r) становится 1/4 L² (или r²). В любом случае, глядя на эти формулы, легко заметить, что форма тела и даже просто смещение центра вращения существенно влияют на момент инерции. Момент инерции играет важную роль в спорте и в механике, и его регулируют, изменяя массу или форму предметов и даже тела спортсмена.
Единицы
Момент силы имеет размерность «сила на расстояние» и единицу измерения ньютон-метр в системе СИ. Энергия и механическая работа также имеют размерность «сила на расстояние» и измеряются в системе СИ в джоулях. Следует заметить, что энергия — это скалярная величина, тогда как момент силы — величина (псевдо) векторная. Совпадение размерностей этих величин не случайность: момент силы 1 Н·м, приложенный через целый оборот, совершает механическую работу и сообщает энергию 2π{\displaystyle 2\pi } джоулей. Математически:
- E=Mθ,{\displaystyle E=M\theta ,}
где E{\displaystyle E} — энергия, M{\displaystyle M} — вращающий момент, θ{\displaystyle \theta } — угол в радианах.
Основные параметры электродвигателя
Момент электродвигателя
Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.
,
- где M – вращающий момент, Нм,
- F – сила, Н,
- r – радиус-вектор, м
Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле
,
- где Pном – номинальная мощность двигателя, Вт,
- nном — номинальная частота вращения, мин-1
Начальный пусковой момент — момент электродвигателя при пуске.
Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)
1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)
момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)
1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)
Мощность электродвигателя
Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.
Мощность электродвигателя постоянного тока
Механическая мощность
Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.
,
- где P – мощность, Вт,
- A – работа, Дж,
- t — время, с
Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .
,
где s – расстояние, м
Для вращательного движения
,
где – угол, рад,
,
где – углавая скорость, рад/с,
Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя
Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Коэффициент полезного действия электродвигателя
Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.
,
- где – коэффициент полезного действия электродвигателя,
- P1 — подведенная мощность (электрическая), Вт,
- P2 — полезная мощность (), Вт
- При этом
потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.
КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.
Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.
где n — частота вращения электродвигателя, об/мин
Момент инерции ротора
Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси
,
- где J – момент инерции, кг∙м2,
- m — масса, кг
Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)
1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)
Момент инерции связан с моментом силы следующим соотношением
,
где – угловое ускорение, с-2
,
Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86
Номинальное напряжение
Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .
Электрическая постоянная времени
Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.
,
где – постоянная времени, с
Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.
Специальные случаи
Формула момента рычага
Файл:Moment arm.png
Момент рычага
Очень интересен особый случай, представляемый как определение момента силы в поле:
- = МОМЕНТ РЫЧАГА * СИЛУ
Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален
- = РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ
Статическое равновесие
Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.
Расчет момента силы
Сейчас рассмотрим несколько вариантов того, как момент может рассчитываться. По идее просто нужно умножить силу на плечо, но поскольку мы имеем дело с векторами, все не так просто.
Если сила расположена перпендикулярно оси стержня, мы просто умножаем модуль силы на плечо.
Расстояние между точками A и B — 3 метра.
Момент силы относительно точки A:
МА=F×AB=F×3м
Если сила расположена под углом к оси стержня, умножаем проекцию силы на плечо.
Обратите внимание, что такие задания могут встретиться только у учеников не раньше 9 класса!
Момент силы относительно точки B:
MB=F×cos30×AB=F×cos30×3м
Если известно расстояние от точки до линии действия силы, момент рассчитывается как произведение силы на это расстояние (плечо).
Момент силы относительно точки B:
MB=F×3м
Раскладываем силу
Разложим приложенную силу \( F \) на части. Одна часть будет располагаться перпендикулярно рукоятке, а другая – параллельно (см. рис. 2).
Рис. 2. Способ разложения силы, приложенной к рычагу под тупым (а) и острым (б) углами
Рукоятку вращает только перпендикулярная часть силы. На рисунке 2 она обозначена, как \( F_{1} \).
Параллельная рукоятке часть обозначена \( F_{2} \). Она не вращает рукоятку, а сдвигает ключ либо от гайки (рис. 2а), либо в сторону гайки (рис 2б).
Рукоятка ключа – это плечо для перпендикулярной части силы.
Момент силы для рисунка 2 считаем по формуле:
\
Наиболее выгодно прикладывать силу перпендикулярно рукоятке (см. рис 1а). В этом случае вращательный момент силы будет наибольшим.
В остальных случаях вращать рукоятку будет не вся сила целиком, а только лишь ее перпендикулярная часть.
Помним! Между силой и ее плечом угол прямой.
Задача 1
Угол между приложенной силой и рукояткой ключа равен 30 градусам. Определить часть вектора силы, вращающего гаечный ключ. С помощью этой части вектора силы рассчитать вращательный момент. Сила равна 20 Н. Длина рукоятки 20 см.
Рисунок.
Рис. 3. Раскладываем на проекции силу, приложенную к рычагу под острым углом
Решение:
Проведем перпендикулярную \( F_{1} \) часть и параллельную рычагу \( F_{2} \) часть силы (рис. 3).
Примечание:
Чтобы разложить вектор силы на части, нужно нарисовать прямоугольник. Так, чтобы вектор, который мы раскладываем, оказался диагональю прямоугольника. Две стороны этого прямоугольника будут параллельны рукоятке, а другие две – перпендикулярны ей.
Тогда стороны прямоугольника обозначат проекции – перпендикулярную и продольную (параллельную).
Вычислим перпендикулярную \( F_{1} \) часть силы:
\
\( sin(30^{o})=0,5\)
\( F_{1} = 20 \cdot 0,5\)
\( F_{1} = 10 \left(H\right)\)
Рассчитаем теперь вращательный момент M этой силы:
\
\( M = 10 \cdot 0,2 \)
\( M = 2 \left( H \cdot \text{м} \right) \)
Ответ: Вращательный момент равен \( 2 \left( H \cdot \text{м} \right) \)
Потребляемая мощность электродвигателя
Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.
В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).
Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.
И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.
Как часто нужно выполнять замену?
Замена масла в АКПП Дастер должна выполняться в срок — при пробеге в 80-100 тыс. км. Однако на практике владельцы Duster обращаются за заменой ещё раньше — из-за низкого качества используемой технической жидкости или суровых условий эксплуатации машины. Первыми сигналами того, что ATF испортилась, являются запах гари и сильное загрязнение смазки.
Тяжёлые условия эксплуатации — это:
- агрессивная манера вождения;
- частое передвижение по городу в режиме «старт-стоп»;
- езда по бездорожью;
- буксировка другого авто;
- работа машины в сильную жару или холод;
- перевозка тяжёлых грузов.
Данные факторы не только снижают ресурс коробки передач, но и отрицательно сказываются на качестве смазки.
Отзывы
Пара сил.
Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил
. Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б
.
Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М
пары всегда равен произведению одной из сил F
на расстояние l
между силами, которое называется плечом пары
, независимо от того, на какие отрезки l
, и разделяет положение оси плечо пары:
Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.
Момент силы
В динамике вращательного движения важна не непосредственно величина силы, а произведение этой величины на расстояние от точки вращения. Это произведение называется моментом силы, обозначается буквой $M$:
$$M=F_\tau R$$
Из приведенной формулы можно получить размерность момента: поскольку сила измеряется в ньютонах, а радиус — в метрах, единица измерения момента силы получается равной ньютон-метру. Радиус вращения при этом нередко называют «плечом силы» $l$.
Рис. 2. Момент силы.
Обратите внимание, что вращательное движение создает только компонента силы, направленная перпендикулярно радиусу поворота, — тангенциальная составляющая силы:
$$F_\tau = F sin \alpha,$$
где $\alpha$ — это угол между радиус-вектором точки, к которой приложена сила $F$, и вектором приложения этой силы.
В самом деле, если сила направлена от точки приложения точно в сторону оси вращения, никакого вращательного движения создать с помощью этой силы не получится, какой бы модуль у этой силы не был. Формула также подтверждает это — синус угла между вектором силы, направленной точно на ось, и радиус-вектором точки приложения равен нулю, а значит, и тангенциальная составляющая силы также будет равна нулю. Момент такой силы, соответственно, также будет нулевым. Создать вращение будет невозможно.
Вращение невозможно создать также в случае, когда сила приложена непосредственно к оси вращения, независимо от ее направления. Радиус-вектор точки приложения силы при этом равен нулю, и определить тангенциальную составляющую приложенной силы невозможно. Момент такой силы оказывается нулевым.
Момент электродвигателя
Мощность
связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.
Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.
Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.
Графическое представление вращающего момента электродвигателя изображено на рисунке.
Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.
Пусковой момент
(Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.
Минимальный пусковой момент
(Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.
Блокировочный момент
(Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.
Вращающий момент при полной нагрузке
(Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.
Пример решения задачи на нахождение момента инерции
Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.
Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.
Решение:
Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:
Массу кольца можно представить в виде:
Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:
В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.
Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.
Решение:
Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:
Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.
Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.
Какому двигателю отдать предпочтение
Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.
Бензиновый двигатель
Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.
Дизельный двигатель
В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.
Электродвигатель
Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.
Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.
Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.
Знак момента силы
Тангенциальная составляющая силы, входящая в формулу момента силы, может иметь два направления. В зависимости от направления такой момент силы может как увеличивать скорость вращения тела, так и уменьшать ее.
Для учета этой разницы вводится такое свойство момента, как знак.
Поскольку угол на координатной плоскости отсчитывается в направлении против часовой стрелки, то момент силы, поворачивающий тело в этом направлении, считается положительным. Если момент силы поворачивает тело по часовой стрелке, он принимается отрицательным.
Рис. 3. Угол поворота.
Что мы узнали?
Для вращательного движения особую роль играет точка приложения силы. Поэтому при исследовании вращательного движения используется не понятие силы, а понятие момента силы, который равен произведению тангенциальной составляющей силы на радиус поворота и измеряется в ньютон-метрах.
Тест по теме
-
Вопрос 1 из 10
При вращательном движении, в отличие от поступательного:
- все точки тела имеют одинаковую скорость
- все точки тела находятся в покое
- различные точки имеют разную скорость
- различные точки имеют одну из двух скоростей
Начать тест(новая вкладка)
Шаги
Какое масло заливать в АКП Дастер
Какие можно сделать выводы по вышесказанному
Оценивая эксплуатационные параметры автомобиля и непосредственно рабочие характеристики его мотора, величина крутящего момента будет обладать большим приоритетом, чем мощность. Среди двигателей, которые имеют примерно одинаковые конструктивные и рабочие параметры, более предпочтительными будут те, у которых крутящий момент выше.
Для обеспечения лучшей динамики разгона машины и обеспечения оптимальных тяговых свойств двигателя, частоту вращения коленчатого вала надо поддерживать в том диапазоне значений, при которых крутящий момент может достичь пиковых своих показателей.
В итоге, можно сделать вывод о том, что классифицировать и сравнивать машины только по мощности (лошадиных силам) двигателя не совсем правильно
Необходимо обращать особенное внимание ещё и на крутящий момент (Н.м). Если крутящий момент двигателя значительно выше, чем у аналогичного или близкого по ТТХ конкурента, то такой мотор будет обладать бо́льшей динамикой
Своей наибольшей мощности двигатель внутреннего сгорания развивает на определённых оборотах. Для автомобилей бензиновых это около 6 тысяч оборотов в минуту, для дизельных – менее 4 тысяч об/мин. Вот почему дизельные моторы относятся, как правило, к классу низкооборотных, а бензиновые – высокооборотных.
Для движения в городском ритме лучше всего подходят низкооборотные моторы с турбонаддувом. Если же есть желание посоперничать в скоростях на трассе, то лучше выбрать автомобиль с высокооборотным силовым агрегатом.
Выводы
Самым обычным и действенным методом проверить уровень масла является демонтаж и контроль через заднюю пробку коробки. Уровень определяется нижним зазором, если открутить ее, то можно долить масло до нужного количества, а остаток вытечет.
Похожие новости
Самостоятельная замена радиатора печки Лада Гранта Качественные комплектующие и адекватная цена сделали отечественный автомобиль Лада Гранта популярным. Например, тот факт, что салон Гранты очень хорошо отапливается, делает актуальным его в условиях суровых зим России. Почему не греет печка: варианты Малый уровень жидкости охлаждения. Неиспра…