Вязкость

Содержание:

Все модели Toyota

Теплофизические свойства водяного пара при различных температурах на линии насыщения

В таблице представлены теплофизические свойства водяного пара на линии насыщения в зависимости от температуры. Свойства пара приведены в таблице в интервале температуры от 0,01 до 370°С.

Каждой температуре соответствует давление, при котором водяной пар находится в состоянии насыщения. Например, при температуре водяного пара 200°С его давление составит величину 1,555 МПа или около 15,3 атм.

Удельная теплоемкость пара, теплопроводность и его динамическая вязкость увеличиваются по мере роста температуры. Также растет и плотность водяного пара. Водяной пар становится горячим, тяжелым и вязким, с высоким значением удельной теплоемкости, что положительно влияет на выбор пара в качестве теплоносителя в некоторых типах теплообменных аппаратов.

Например, по данным таблицы, удельная теплоемкость водяного пара Cp при температуре 20°С равна 1877 Дж/(кг·град), а при нагревании до 370°С теплоемкость пара увеличивается до значения 56520 Дж/(кг·град).

В таблице даны следующие теплофизические свойства водяного пара на линии насыщения:

  • давление пара при указанной температуре p·10-5, Па;
  • плотность пара ρ″, кг/м3;
  • удельная (массовая) энтальпия h″, кДж/кг;
  • теплота парообразования r, кДж/кг;
  • удельная теплоемкость пара Cp, кДж/(кг·град);
  • коэффициент теплопроводности λ·102, Вт/(м·град);
  • коэффициент температуропроводности a·106, м2/с;
  • вязкость динамическая μ·106, Па·с;
  • вязкость кинематическая ν·106, м2/с;
  • число Прандтля Pr.

Удельная теплота парообразования, энтальпия, коэффициент температуропроводности и кинематическая вязкость водяного пара при увеличении температуры снижаются. Динамическая вязкость и число Прандтля пара при этом увеличиваются.

Будьте внимательны! Теплопроводность в таблице указана в степени 102. Не забудьте разделить на 100! Например, теплопроводность пара при температуре 100°С равна 0,02372 Вт/(м·град).

Как заполняется оборотная сторона акта

Оборотная сторона формы предназначена для описания действий, которые нужно выполнить для того, чтобы устранить выявленные дефекты и неисправности. Все мероприятия необходимо описать подробнейшим образом.

Полностью заполненный акт должны подписать уполномоченные представители компании-заказчика, монтажной фирмы и компании-производителя.

Как составить акт приема-сдачи отремонтированного объекта?

Для приема и ввода в эксплуатацию отремонтированного основного средства составляется акт приема-сдачи.

При этом можно использовать типовой бланк ОС-3 либо разработать свою форму.

Составляется акт в одном экземпляре, если ремонтируется ОС своими силами.

Если ремонт выполняет сторонний подрядчик, то требуется оформить два экземпляра: по одному для каждой стороны.

Данный акт должен включать данные об основном средстве на момент передачи и приема после ремонта, а также информация о произведенных затратах.

Как в инвентарной карточке отразить ремонтные работы по ОС?

Для отражения сведений о ремонте требуется пользоваться инвентарной карточкой учета основного средства – то есть, специализированной формой ОС-6 или ОС-6б, если речь идет о малом предприятии.

Здесь важно учитывать такой момент: отражать стоит только итог ремонтных работ, к примеру:

  • смена запчастей;
  • смена комплектующих – то есть, с конкретными пояснениями.

В унифицированной форме затраты на ремонт вносятся в шестой раздел, где указывается вид проводимых работ, реквизиты документа, на основании которого совершались операции, а также соответствующая сумма расходов.

Теплопроводность водяного пара при высоких температурах

В таблице приведены значения теплопроводности диссоциированного водяного пара в размерности Вт/(м·град) при температурах от 1400 до 6000 K и давлении от 0,1 до 100 атм.

По данным таблицы, теплопроводность водяного пара при высоких температурах заметно увеличивается в области 3000…5000 К. При высоких значениях давления максимум коэффициента теплопроводности достигается при более высоких температурах.

Будьте внимательны! Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000!

  1. Михеев М.А., Михеева И.М. Основы теплопередачи.
  2. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.

Вязкость спирта

Спирты представляют собой органические соединения, углеводороды, которые обязательно содержат гидроксильную группу ОН (одну или несколько), связанную с углеводородным радикалом.

Спирты бывают жидкими, вязкими, твердыми — это обусловлено количеством в молекуле углеводородных радикалов. С ростом их количества снижается водорастворимость вещества.

Хотя некоторые спирты токсичны для человека (этиленгликоль, метилен), они необходимы для естественных процессов метаболизма в организме. Так, многие липиды, поставщики энергии, в своей основе имеют глицерин (представитель спиртов).

Вязкость многих спиртов соизмерима с соответствующим показателем у воды. Например, вязкость этилового спирта составляет 0,00119 Па•с.

Спирты перекачивают импеллерными, мембранными, шланговыми насосами.

Впервые озвучены цены на автомобиль от Xiaomi. Но дебют китайской новинки состоится не скоро

Кинематическая вязкость воды при различных температурах

Вода H2O представляет собой ньютоновскую жидкость и ее течение описывается законом вязкого трения Ньютона, в уравнении которого коэффициент пропорциональности называется коэффициентом вязкости, или просто вязкостью.

Вязкость воды зависит от температуры. Кинематическая вязкость воды равна 1,006·10 -6 м 2 /с при температуре 20°С.

В таблице представлены значения кинематической вязкости воды в зависимости от температуры при атмосферном давлении (760 мм.рт.ст.). Значения вязкости даны в интервале температуры от 0 до 300°С. При температуре воды свыше 100°С, ее кинематическая вязкость указана в таблице на линии насыщения.

Кинематическая вязкость воды изменяет свою величину при нагревании и охлаждении. По данным таблицы видно, что с ростом температуры воды ее кинематическая вязкость уменьшается. Если сравнить вязкость воды при различных температурах, например при 0 и 300°С, то очевидно ее уменьшение примерно в 14 раз. То есть вода при нагревании становится менее вязкой, а высокая вязкость воды достигается если воду максимально охладить.

Значения коэффициента кинематической вязкости при различных температурах необходимы для вычисления величины числа Рейнольдса, которое соответствует определенному режиму течения жидкости или газа.

t , °С 20 40 60 80 100 120 140
ν ·10 6 , м 2 /с 1,789 1,006 0,659 0,478 0,365 0,295 0,252 0,217
t , °С 160 180 200 220 240 260 280 300
ν ·10 6 , м 2 /с 0,191 0,173 0,158 0,148 0,141 0,135 0,131 0,128

Если сравнить вязкость воды с вязкостью других ньютоновских жидкостей, например с кровью, или с маслами, то вода будет иметь меньшую вязкость. Менее вязкими, по сравнению с водой, являются органические жидкости – ацетон, бензол и сжиженные газы, например такие, как жидкий азот.

Что за явление — динамическая вязкость воды?

Отличительной особенностью является вязкость воды, сопротивляющаяся перемещению частиц в отношении друг друга. Она подразделяется на объемную и тангенциальную. Объёмная сопротивляется растяжению, она начинает действовать при распространении в воде различных звуковых волн. Тангенциальная вязкость способна оказывать сопротивление сдвигающему усилию.

Характерным свойством воды является текучесть, с которой мы сталкиваемся постоянно. Вязкость жидкости обратно пропорциональна ее текучести. Между отдельными молекулами возникает сила трения, и чтобы сдвинуть их с места, необходимо приложить усилие. Такое явление получило в науке название «динамическая вязкость воды», которую можно увеличить, если в воде растворить какие-либо вещества. Это могут быть различные соли. Динамическую вязкость воды еще называют абсолютной, ее можно узнать с помощью произведения плотности жидкости на ее кинематическое сопротивление.

Такая пониженная текучесть потока, где линейная скорость под воздействием давления сдвига в 1 ньютон на метр квадратный имеет градиент один метр в секунду на одном метре расстояния, перпендикулярного к плоскости сдвига, является единицей измерения абсолютной (динамической) вязкости. Ее измеряют при помощи коэффициента динамической вязкости (μ, η). Например, в морской воде, где присутствуют неорганические соединения, сопротивление воды намного выше, чем у пресной. Это можно почувствовать, даже плавая в ней: если сравнить воду Азовского и Средиземного моря, то во втором варианте человек быстрее научится плавать, так как там вода более соленая.

Вязкость. Пояснения. Абсолютная и кинематическая вязкость. Таблицы значений вязкости — мало, школьный вариант. Вариант для печати.

  • Кинематическая вязкость — мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой — 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.

    • Размерность кинематической вязкости — L2/T, где L — длина, и T — время. Обычно используется сантистокс (cSt). ЕДИНИЦА СИ кинематической вязкости — mm2/s, = 1 cSt =1 сантиСтокс = 10-6м2/с = мм2/с
    • Перевод единиц кинематической вязкости
  • Абсолютная (динамическая) вязкость, иногда называемая динамической или простой вязкостью, является произведением кинематической вязкости и плотности жидкости:

    • Абсолютная вязкость = Кинематическая вязкость * Плотность
    • Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости — Паскаль-секунда (Pa-s), запомним, что 1 сПуаз = 1 mPa-s.
    • Перевод единиц динамической = абсолютной вязкости
Вязкость газов при атмосферном давлении:
η, 10 -6 Па· с 150 К 200 К 250 К 300 К 400 К
Азот 10.0 12.9 15.5 17.9 22.1
Аммиак 6.89 8.53 10.3 13.9
Аргон 12.3 16.0 19.5 22.7 28.5
Ацетилен 10.3 13.5
Бромметан 13.2 15.8 20.2
Водород 5.57 6.78 7.90 8.94 10.9
Водяной пар 9.13 13.2
Воздух 10.3 13.2 16.0 18.5 23.0
Гелий 12.3 15.0 17.5 19.9 24.3
Кислород 11.3 14.6 17.8 20.7 25.9
Метан 7.76 9.53 11.2 14.2
Неон 19.4 23.9 28.0 31.7 38.4
Оксид азота (II) 10.5 13.6 16.6 19.3 24.1
Оксид углерода (II) 9.84 12.7 15.4 17.8 22.1
Оксид углерода (IV) 10.2 12.6 15.0 19.5
Пропан 7.1 8.3 9.5
Этан 6.43 7.96 9.45 12.2
Этилен 7.1 8.8 10.4 13.5
Вязкость жидкостей при атмосферном давлении:
η, 10 -3 Па· с 0°C 20°C 50°C 70°C 100°C
Ацетон = 0.32 0.25 = =
Бензин 0.73 0.52 0.37 0.26 0.22
Бензол = 0.65 0.44 0.35 =
Вода 1.80 1.01 0.55 0.41 0.28
Глицерин 12100 1480 180 59 13
Керосин 2.2 1.5 0.95 0.75 0.54
Кислота уксусная = 1.2 0.62 0.50 0.38
Масло касторовое = 987 129 49 =
Пентан 0.28 0.24 = = =
Ртуть = 1.54 1.40 = 1.24
Спирт метиловый 0.82 0.58 0.4 0.3 0.2
Спирт этиловый (96%) 1.8 1.2 0.7 0.5 0.3
Толуол = 0.61 0.45 0.37 0.29
Вязкость расплавов:
t°, °C η, 10 -3 Па· с
Алюминий 700 2.90
Висмут 305 1.65
Калий 100 0.46
Натрий 105 0.69
Олово 240 1.91
Свинец 440 2.11
Цинк 430 3.3
Бромид ртути 250 3.0
Бромид свинца 380 10.2
Бромид серебра 610 1.86
Гидроксид калия 400 2.3
Гидроксид натрия 350 4.0
Хлорид калия 790 1.4
Хлорид натрия 320 2.83
Хлорид серебра 600 1.61
Вязкость воды:
t°, °C η, 10 -6 Па· с
1797
10 1307
20 1004
30 803
40 655
50 551
60 470
70 407
80 357
90 317
100 284
110 256
120 232
130 212
140 196
150 184
Динамическая вязкость воздуха:
η, 10 -6 Па· с температура воздуха
давление 0°C 25°C 100°C
1 атм 17.20 18.37 21.80
20 атм 17.53 18.65 22.02
50 атм 18.15 19.22 22.40
100 атм 19.70 20.60 23.35
200 атм 23.70 23.95 25.30

Небольшой опрос

Разворот по стрелке

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:

η(T)=A⋅exp⁡(QRT),{\displaystyle \eta (T)=A\cdot \exp \left({\frac {Q}{RT}}\right),}

где:

  • Q{\displaystyle Q} — энергия активации вязкости (Дж/моль);
  • T{\displaystyle T} — температура (К);
  • R{\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
  • A{\displaystyle A} — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q{\displaystyle Q} изменяется от большой величины QH{\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину QL{\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда (QH−QL)<QL{\displaystyle \left(Q_{H}-Q_{L}\right)<Q_{L}}, или ломкие, когда (QH−QL)≥QL{\displaystyle \left(Q_{H}-Q_{L}\right)\geq Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса RD=QHQL{\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют RD<2{\displaystyle R_{D}<2}, в то время как ломкие материалы имеют RD≥2{\displaystyle R_{D}\geq 2}.

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

η(T)=A1⋅T⋅1+A2⋅exp⁡BRT⋅1+Cexp⁡DRT{\displaystyle \eta (T)=A_{1}\cdot T\cdot \left\cdot \left}

с постоянными A1{\displaystyle A_{1}}, A2{\displaystyle A_{2}}, B{\displaystyle B}, C{\displaystyle C} и D{\displaystyle D}, связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования Tg{\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования T<Tg{\displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

η(T)=ALT⋅exp⁡(QHRT),{\displaystyle \eta (T)=A_{L}T\cdot \exp \left({\frac {Q_{H}}{RT}}\right),}

с высокой энергией активации QH=Hd+Hm{\displaystyle Q_{H}=H_{d}+H_{m}}, где Hd{\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm{\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T<Tg{\displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При T≫Tg{\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

η(T)=AHT⋅exp⁡(QLRT),{\displaystyle \eta (T)=A_{H}T\cdot \exp \left({\frac {Q_{L}}{RT}}\right),}

но с низкой энергией активации QL=Hm{\displaystyle Q_{L}=H_{m}}. Это связано с тем, что при T≫Tg{\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Примечания

  1. В общем случае это не так.
  2. О некоторых ошибках в курсах гидродинамики, с. 3—4.
  3. Alexander J. Smits, Jean-Paul Dussauge Turbulent shear layers in supersonic flow. — Birkhäuser, 2006. — P. 46. — ISBN 0-387-26140-0.
  4. data constants for sutherland’s formula
  5. Viscosity of liquids and gases
  6. Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
  7. Попов Д. Н. Динамика и регулирование гидро- и превмосистем. : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
  8. Седов Л. И. Механика сплошной среды. Т. 1. — М.: Наука, 1970. — С. 166.
  9. Френкель Я. И. Кинетическая теория жидкостей. —Ленинград, Наука, 1975. — стр. 226
  10. Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).
  11. Gas Viscosity Calculator

Пробная подача давления в расширительный бочок

Большое давление подавать не надо, чтобы не разорвало расширительный бачок. Создаём давление порядка 1 кг, контролируя подачу воздуха по манометру насоса.

С первой попытки сразу стало слышно, что часть воздуха стравливается через щели между крышкой и резьбой. Следовательно, нужно добавив еще одну прокладку усилить уплотнение.

Пришёл к выводу, что лента фум не даёт крышке плотно завернуться до полного прикосновения с уплотнителем, который мы вставили в крышку.

Самый лучший вариант найти «родную» крышку, которая точно подойдёт по резьбе бачка без всяких подгоночных операций.

Пробуем ещё раз подать давление в бачок, крышка закрутилась плотно, теперь нужно проверить будет ли она держать нагнетаемый воздух. Результат вновь отрицательный.

Попробуем добавить сверху ещё одну самодельную прокладку от заливной горловины под крышку. В итоге, с двумя прокладками крышка стала хорошо держать давление!

Если даже часть воздуха и стравливает, то очень медленно и за это время можно не спеша прокачать тормозную систему.

Определение — динамическая вязкость

ZIC XQ Fully Synthetic Определение динамической вязкости производится на основе закона Стокса или закона Пуазейля.  

Определение динамической вязкости этими приборами основано на зависимости величины динамической вязкости от перепада давления на капиллярной трубке при постоянном расходе жидкости. При прокачивании через капилляр жидкости с постоянным расходом измерение ее динамической вязкости сводится к измерению перепада давления на капилляре. Для поддержания неизменной величины расхода жидкости применен дозирующий насос шестеренчатого типа.  

Определение динамической вязкости по этим формулам требует значительного времени, так как опытное определение некоторых входящих в них величин, например радиуса капилляра г и других, представляет известные экспериментальные трудности. Однако практически задача может быть значительно упрощена, если воспользоваться заранее определенной вязкостной характеристикой некоторой стандартной жидкости.  

Определение динамической вязкости заключается в установлении времени истечения под постоянным давлением определенного объема ( равного объему шарика вискозиметра) испытуемого нефтепродукта через капиллярную трубку вискозиметра, для которого заранее установлена его постоянная.  

Определение динамической вязкости по этим формулам требует значительного времени, так как опытное определение некоторых входящих Б них величин, например радиуса капилляра г и других, представляет известные экспериментальные трудности. Однако практически задача может быть значительно упрощена, если воспользоваться заранее определенной вязкостной характеристикой некоторой стандартной жидкости.  

Определение динамической вязкости исследуемого масла проводят так же, как это было описано выше при определении постоянной вискозиметра, но при одном наполнении и при одном давлении ( обычно при 150 мм рт. ст.), а время тоже берут среднее из шести замеров. Время наполнения и истечения масла из шарика а должно укладываться в пределах 100 — 360 сек.  

Для определения динамической вязкости в капиллярном вискозиметре оба колена вискозиметра через четырехходовой кран соединяют с манометром, который, в свою очередь, соединен через воздушный буфер с источником давления.  

Для определения динамической вязкости требуются точные данные о плотности, которые часто отсутствуют, особенно для жидких сплавов. Чтобы получить динамическую вязкость, часто приходится вычислять плотность; для сплавов обычно пользуются законом Ве-гарда

Полученными результатами следует пользоваться с осторожностью, так как указанный закон часто не выполняется, особенно в сплавах с высокими отрицательными энтальпиями смешения.  . Для определения динамической вязкости нефтепродуктов согласно ГОСТ применяется капиллярный вискозиметр Уббелоде-Гольде, а для определения кинематической вязкости нефтепродуктов — капиллярные вискозиметры Пинкевича и Воларовича

Для определения динамической вязкости нефтепродуктов согласно ГОСТ применяется капиллярный вискозиметр Уббелоде-Гольде, а для определения кинематической вязкости нефтепродуктов — капиллярные вискозиметры Пинкевича и Воларовича.  

Динамическая вязкость.  

Для определения динамической вязкости водно-спиртовых ра-ггворов нами по этим данным составлены графики, позволяющие эпределить значения ее для концентраций, выраженных как в объем-шх, так и в массовых процентах.  

Метод определения динамической вязкости применяется в научно-исследовательских работах.  

Методы определения динамической вязкости применяются в научно-исследовательских работах.  

При определении динамической вязкости величину первоначально подвешиваемого — груза подбирают с таким расчетом, чтобы продолжительность трех оборотов цилиндра составила не менее 30 сек. Измерения проводят до тех пор, пока по четырем последовательным отсчетам времени не получат данные, расходящиеся не более чем на 10 % от среднего арифметического сравниваемых измерений. Затем увеличивают груз и снова отсчитывают продолжительность трех оборотов цилиндра.  

При определении динамической вязкости величина первоначально подвешиваемого груза подбирается с таким расчетом, чтобы время трех оборотов цилиндра составило не менее 30 сек. При этом измерения производят до тех пор, пока четыре последовательных отсчета времени не дадут данные, расходящиеся не более чем на 10 % от среднего арифметического сравниваемых измерений. Затем увеличивают груз и снова производят отсчеты времени трех оборотов цилиндра.  

Вязкость крови

Кровь представляет собой жидкую среду организма (вязкопластическую жидкость), состоящую из плазмы и находящихся в ней клеток (эритроцитов, тромбоцитов, лейкоцитов, белков). Она определяет качество всех процессов, происходящих в тканях и отдельных органах.

Вязкость крови показывает соотношение количества ее кровяных клеток к объему плазмы. Этот показатель крайне важен для полноценной работы организма и прежде всего сердечно-сосудистой системы. Нормальным значением в среднем считается 4–5 мПа•с, отклонения же в ту или иную сторону способны вызвать серьезные патологии. На вязкость крови влияют многие факторы: температура тела, состав (венозная более вязкая, чем артериальная), пол (у мужчин — 4,3–5,3 мПа•с, у женщин — 3,9–4,5 мПа•с), возраст (у новорожденных вязкость выше), внешние воздействия, применение медицинских препаратов.

Для перекачивания крови животных на производстве используется насосные установки разных типов: центробежные, мембранные, шестеренчатые, винтовые, перистальтические.

Вязкость. Пояснения. Абсолютная и кинематическая вязкость. Таблицы значений вязкости — мало, школьный вариант.

  • Кинематическая вязкость — мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой — 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.

    • Размерность кинематической вязкости — L2/T, где L — длина, и T — время. Обычно используется сантистокс (cSt). ЕДИНИЦА СИ кинематической вязкости — mm2/s, = 1 cSt =1 сантиСтокс = 10-6м2/с = мм2/с
    • Перевод единиц кинематической вязкости
  • Абсолютная (динамическая) вязкость, иногда называемая динамической или простой вязкостью, является произведением кинематической вязкости и плотности жидкости:

    • Абсолютная вязкость = Кинематическая вязкость * Плотность
    • Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости — Паскаль-секунда (Pa-s), запомним, что 1 сПуаз = 1 mPa-s.
    • Перевод единиц динамической = абсолютной вязкости
Вязкость газов при атмосферном давлении:
η, 10 -6 Па· с 150 К 200 К 250 К 300 К 400 К
Азот 10.0 12.9 15.5 17.9 22.1
Аммиак 6.89 8.53 10.3 13.9
Аргон 12.3 16.0 19.5 22.7 28.5
Ацетилен 10.3 13.5
Бромметан 13.2 15.8 20.2
Водород 5.57 6.78 7.90 8.94 10.9
Водяной пар 9.13 13.2
Воздух 10.3 13.2 16.0 18.5 23.0
Гелий 12.3 15.0 17.5 19.9 24.3
Кислород 11.3 14.6 17.8 20.7 25.9
Метан 7.76 9.53 11.2 14.2
Неон 19.4 23.9 28.0 31.7 38.4
Оксид азота (II) 10.5 13.6 16.6 19.3 24.1
Оксид углерода (II) 9.84 12.7 15.4 17.8 22.1
Оксид углерода (IV) 10.2 12.6 15.0 19.5
Пропан 7.1 8.3 9.5
Этан 6.43 7.96 9.45 12.2
Этилен 7.1 8.8 10.4 13.5
Вязкость жидкостей при атмосферном давлении:
η, 10 -3 Па· с 0°C 20°C 50°C 70°C 100°C
Ацетон = 0.32 0.25 = =
Бензин 0.73 0.52 0.37 0.26 0.22
Бензол = 0.65 0.44 0.35 =
Вода 1.80 1.01 0.55 0.41 0.28
Глицерин 12100 1480 180 59 13
Керосин 2.2 1.5 0.95 0.75 0.54
Кислота уксусная = 1.2 0.62 0.50 0.38
Масло касторовое = 987 129 49 =
Пентан 0.28 0.24 = = =
Ртуть = 1.54 1.40 = 1.24
Спирт метиловый 0.82 0.58 0.4 0.3 0.2
Спирт этиловый (96%) 1.8 1.2 0.7 0.5 0.3
Толуол = 0.61 0.45 0.37 0.29
Вязкость расплавов:
t°, °C η, 10 -3 Па· с
Алюминий 700 2.90
Висмут 305 1.65
Калий 100 0.46
Натрий 105 0.69
Олово 240 1.91
Свинец 440 2.11
Цинк 430 3.3
Бромид ртути 250 3.0
Бромид свинца 380 10.2
Бромид серебра 610 1.86
Гидроксид калия 400 2.3
Гидроксид натрия 350 4.0
Хлорид калия 790 1.4
Хлорид натрия 320 2.83
Хлорид серебра 600 1.61
Вязкость воды:
t°, °C η, 10 -6 Па· с
1797
10 1307
20 1004
30 803
40 655
50 551
60 470
70 407
80 357
90 317
100 284
110 256
120 232
130 212
140 196
150 184
Динамическая вязкость воздуха:
η, 10 -6 Па· с температура воздуха
давление 0°C 25°C 100°C
1 атм 17.20 18.37 21.80
20 атм 17.53 18.65 22.02
50 атм 18.15 19.22 22.40
100 атм 19.70 20.60 23.35
200 атм 23.70 23.95 25.30
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector