Относительная и абсолютная погрешность

ВАЗ 2114 чип-тюнинг

Эту процедуру можно отнести к одному из главных этапов преобразования автомобиля. Чип тюнинг двигателя сделает его более мощным, улучшит динамику, раскроет все скрытые ресурсы автомобиля без риска вреда мотора, при котором потребуется его ремонт и покупка дорогостоящих запчастей. Помимо этого установка новой прошивки электронного блока управления двигателем избавит его от нестабильной работы и ошибок старых версий.

Прелесть чип-тюнинга состоит в том, что можно увеличить мощность двигателя ВАЗ 2114 на 8-10%, а используя турбокомпрессор – до 30%. Самым главным условием хорошего чип-тюнинга является выполнение всех операций на отрегулированном и полностью исправном моторе высококвалифицированными специалистами.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным

Поэтому в практике более важное значение имеет определение относительной погрешности измерения

Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Источники погрешностей

Рассмотрим различные причины возникновения погрешностей.

Математическая модель задачи является неточной

Погрешность возникает из-за того, что сам численный метод или математическая модель является лишь приближением к точному методу (например, дифференцирование). Кроме того, любая математическая модель или метод могут внести существенные погрешности, если в ней не учтены какие-то особенности рассматриваемой задачи. Модель может прекрасно работать в одних условиях и быть совершенно неприемлемой в других. Такую погрешность называют также методической. Она всегда имеет место, даже при абсолютно точных данных и абсолютно точных вычислениях. В большинстве случаев погрешность численного метода можно уменьшить до требуемого значения за счет изменения параметров метода (например, уменьшением шага дискретизации, или увеличением количества итераций).

Ошибки в исходных данных

Исходные данные задачи часто являются основным источником погрешностей. Ошибки такого типа неизбежны и проявляются в любых реальных задачах, поскольку любое измерение может быть проведено с только какой-то предельной точностью. Вместе с погрешностями, вносимыми математической моделью, их называют неустранимыми погрешностями, поскольку они не могут быть уменьшены ни до начала решения задачи, ни в процессе ее решения.

Следует стремиться к тому, чтобы все исходные данные были примерно одинаковой точности. Сильное уточнение одних исходных данных при наличии больших погрешностей в других не приводит к повышению точности конечных результатов. Если какие-то отдельные точки данных (измерения) явно ошибочные, их можно исключить из вычислений.

Вычислительные ошибки (ошибки округления)

Ошибки этого типа проявляются из-за дискретной (а не непрерывной) формы представления величин в компьютере. Вычислительные ошибки можно свести к минимуму продуманно организовывая алгоритмы.

Абсолютная и относительная погрешности

Точность полученного в результате вычисления результата определяется погрешностью вычислений. Различают два вида погрешностей – абсолютную и относительную.

Абсолютная погрешность некоторого числа равна разности между его истинным значением и приближенным значением, полученным в результате вычисления или измерения:

          (А.1)

где а – приближенное значение числа х.

Относительная погрешность – это отношение абсолютной погрешности к приближенному значению числа:

           (А.2)

Истинное значение величины х обычно неизвестно. Имеется лишь приближенное значение а и нужно найти его предельную погрешность . В дальнейшем значение  принимается в качестве абсолютной погрешности приближенного числа а. Тогда истинное значение х находится в интервале .

Технические характеристики

Технические характеристики (на конец 2010 года)

ВЕСА РЕЗУЛЬТАТОВ НЕРАВНОТОЧНЫХ ИЗМЕРЕНИЙ

При неравноточных измерениях, когда результаты каждого измерения нельзя считать одинаково надежными, уже нельзя обойтись определением простого арифметического среднего. В таких случаях учитывают достоинство (или надежность) каждого результата измерений.Достоинство результатов измерений выражают некоторым числом, называемым весом этого измерения. Очевидно, что арифметическое среднее будет иметь больший вес по сравнению с единичным измерением, а измерения, выполненные при использовании более совершенного и точного прибора, будут иметь большую степень доверия, чем те же измерения, выполненные прибором менее точным.
Поскольку условия измерений определяют различную величину средней квадратической погрешности, то последнюю и принято принимать в качестве основы оценки весовых значений, проводимых измерений. При этом веса результатов измерений принимают обратно пропорциональными квадратам соответствующих им средних квадратических погрешностей.
Так, если обозначить через р и Р веса измерений, имеющие средние квадратические погрешности соответственно m и µ, то можно записать соотношение пропорциональности:

Например, если µ средняя квадратическая погрешность арифметического среднего, а m – соответственно, одного измерения, то, как следует из

можно записать:

т. е. вес арифметического среднего в n раз больше веса единичного измерения.

Аналогичным образом можно установить, что вес углового измерения, выполненного 15-секундным теодолитом, в четыре раза выше веса углового измерения, выполненного 30-секундным прибором.

При практических вычислениях обычно вес одной какой-либо величины принимают за единицу и при этом условии вычисляют веса остальных измерений. Так, в последнем примере если принять вес результата углового измерения 30-секундным теодолитом за р = 1, то весовое значение результата измерения 15-секундным теодолитом составит Р = 4.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Абсолютная и относительная погрешность

Абсолютной погрешностью или, короче, погрешностью приближенного
числа называется разность между этим числом и его точным значением (из большего числа вычитается меньшее)*.

Пример 1. На предприятии 1284 рабочих и служащих. При
округлении этого числа до 1300 абсолютная погрешность
составляет 1300 — 1284 = 16. При округлении до 1280 абсолютная погрешность составляет 1284 — 1280 = 4.

Относительной погрешностью приближенного числа называется отношение
абсолютной погрешности приближенного числа к самому этому числу.

Пример 2. В школе 197 учащихся. Округляем это число до 200. Абсолютная
погрешность составляет 200 — 197 = 3. Относительная погрешность равна 3/197 или, округленно, 3/197 = 1,5 %.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности.
Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Пример 3. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая — 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза
неизвестен. Но абсолютная погрешность не
превышает 50 г. Относительная погрешность не превосходит 50/3600 ≈ 1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью. Число, заведомо превышающее
относительную погрешность (или в худшем случае равное ей), называется предельной относительной погрешностью.

В примере 3 за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность — 1,4 %.

Величина предельной погрешности не является вполне определенной. Так, в примере 3 можно принять за предельную абсолютную
погрешность 100 г, 150 г и вообще всякое число, большее чем 50 г. На практике берется по возможности меньшее значение
предельной погрешности. В тех случаях, когда известна точная величина погрешности, эта величина служит одновременно
предельной погрешностью. Для каждого приближенного числа должна быть известна его предельная погрешность
(абсолютная или oотносительная). Когда она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено приближенное число 4,78 без указания
предельной погрешности, то подразумевается, что предельная абсолютная погрешность составляет 0,005. Вследствие этого
соглашения всегда можно обойтись без указания предельной погрешности числа.

Предельная абсолютная погрешность обозначается греческой буквой Δ («дельта»); предельная относительная
погрешность — греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой а, то

δ = Δ/a.

Пример 4. Длина карандаша измерена линейкой с миллиметровыми делениями. Измерение показало 17,9 см. Какова предельная
относительная погрешность этого измерения?
Здесь а = 17,9 см; можно принять Δ = 0,1 см, так как с точностью до 1 мм измерить карандаш нетрудно, a значительно уменьшить, предельную погрешность ни удастся (при навыке можно прочесть на хорошей линейке и 0,02 и даже 0,01 см, но у самого карандаша ребра могут разниться на бoльшую величину). Относительная погрешность равна 0,1/17,9.
Округляя, находим δ = 0,1/18 ≈ 0,6%.

Пример 5. Цилиндрический поршень имеет около 35 мм в диаметре. С какой точностью нужно его измерить микрометром, чтобы
предельная относительная погрешность составляла 0,05%?Решение. По условию, предельная абсолютная погрешность должна составлять 0,05% от 35 мм. Следовательно, предельная
абсолютная погрешность равна 36*(0,05/100) = 0,0175 (мм) или, усиливая, 0,02 (мм). Можно воспользоваться
формулой δ = Δ/a.
Подставляя в неё а = 35, δ = 0,0005, имеем 0,0005 = Δ/35. Значит, Δ = 35 • 0,0005 = 0,0175 (мм).

* Иначе говоря, если a есть приближенное число, а х – его точное значение, то абсолютная погрешность есть абсолютное
значение разности a – х. В некоторых руководствах абсолютной погрешностью называется сама
разность a – х (или разность х — a). Эта величина может быть положительной или отрицательной.

Связь абсолютной и предельной абсолютной погрешностей

Как уже говорилось, в большинстве случаев точное значение величины А нам неизвестно. Это означает, что точное значение абсолютной погрешности найти просто невозможно, и приходится лишь оценивать ее каким-то числом, которое называют предельной абсолютной погрешностью Δа. При этом справедливо неравенство:

Δа > Δ = |А — а|

Предельная абсолютная погрешность может иметь бесконечное количество значений. Ведь если нам удалось оценить какое-то значение Δа, то все числа, которые больше него, тоже будут удовлетворять определению предельной абсолютной погрешности. Для решения практических задач нужно стараться найти минимальное значение Δа.

Внутренний тюнинг салона Ваз 2113-2114-2115

Доработка Ваз и Лада своими руками

тюнинг салона

. Тюнинг салона ваз 2115 своими руками, внутренний тюнинг ваз 2114, советы по доработке салона. Улучшение заводских характеристик. Несмотря на то что автомобили Лада Самара 2 являются удачными, в этих машинах все равно присутствуют недостатки, поэтому автовладельцы очень часто прибегают к тюнингу ваз своими силами. Все материалы разбиты по категориям и содержат развернутые инструкции по доработке основных узлов автомобиля ваз 2115. Добро пожаловать в разделы тюнинга и доработок. Безопасная замена рулевого колеса с другим ободом Самым безопасным является рулевое колесо, установленное на автомобиль заводом-изготовителем. Именно оно было разработано специально для данной модели , прошло необходимые испытания и соответствует действующим нормативам. «Самары» последних Надежный блокиратор рулевого вала противоугонный Блокираторы рулевого вала относятся к механическим противоугонным системам или попросту замкам. Надежность и полезность механических систем очевидна и не нуждается в дополнительной рекламе. Механические «противоугонки» можно с успехом

Стеклоподъемники с электрическим приводом — одна из любимых опций тюнингистов. Сегодня «электростеклами» уже никого не удивишь, некоторые модификации «самар» комплектуются ими даже на конвейере. Но все же чаще в руки потребителей попадают

Электропривода замка дверей всех

На х семейства «Самара», заводом-изготовителем может быть установлена система блокировки замков дверей. Она одновременно блокирует замки всех дверей при запирании ключом замка левой передней двери, а также при нажатии на кнопку блокировки

Закрытие электроприводом замка багажного отсека

Ситуацию, когда открыть багажный отсек ваз 2113 необходимо при работающем двигателе, представить нетрудно. Например, вы решили загрузить багажник, пока прогревается двигатель. Однако при работе двигателя ключ от замка крышки багажника или

Электромеханический корректор

Для изменения угла наклона пучка света фар в зависимости от загрузки на автомобиле применяется гидрокорректор фар, состоящий из главного цилиндра, закрепленного на панели приборов, и рабочих цилиндров, установленных на корпусах фар и

Дополнительный маршрутный автокомпьютер

На панели приборов ВАЗ 2115 предусмотрено специальное гнездо для установки маршрутного компьютера, закрытое заглушкой. Мы решили использовать это место по назначению. Маршрутный или, как его еще называют, бортовой или

В продаже имеется широкий выбор головных аудиоустройств. Все они оснащены радиоприемником и отличаются друг от друга типом используемого носителя звукового сигнала (компакт-кассета или компакт-диск), а также наличием возможности подключения

Установку динамиков показываем на автомобиле ВАЗ-2115, так как в х семейства «Самара» динамики устанавливаются под облицовками панели приборов, и такая работа проста. В х «Самара-2» передние динамики устанавливаются в окна внутренних панелей

Задние динамики устанавливаем на места, предусмотренные производителем в правой и левой опорах полки багажника ваз 2114. Диаметр задних динамиков такой же, как и передних — 130 мм. Спинку заднего сиденья для удобства можно снять. Длины проводов,

Всех уже достали эти противные сверчки. Давайте их лечить в месте.

1) СКРЕЖЕТ СКРИП В РУЛЕВОЙ КОЛОНКЕ!

изначально был скрежет-скрип (с железным призвуком), как мне казалось где-то в районе рулевой колонки. Был он как бы в Подсветка приборов светодиодами

Первый опыт смены подсветки был еще пол года назад. Смысл был в замене штатных лампочек накаливания, 10-ти мм светодиоды белого свечения; стирание с вставки зеленного светофильтра обычным лезвием и наклеивание синей пленки с обратной стороны. Но

Иллюстрации салона автовладельцев

Определение погрешности

Владельцев измерительных приборов интересует, прежде всего, величина максимальной погрешности, характерной для манометра. Она зависит не только от класса точности, но и от диапазона измерений. Таким образом, чтобы получить значение погрешности, нужно произвести некоторые вычисления. Например, для манометра с диапазоном измерений, равным 6 МПа, и классом точности 1,5 погрешность будет рассчитываться по формуле 6*1,5/100=0,09 МПа.

Необходимо отметить, что таким способом можно посчитать только основную погрешность.

Ее величина определяется идеальными условиями эксплуатации. На нее оказывают влияние только конструктивные характеристики, а также особенности сборки прибора, например, точность градуировки делений на шкале, сила трения в измерительном механизме. Однако эта величина может отличаться от фактической, поскольку существует также дополнительная погрешность, определяемая условиями, в которых эксплуатируется манометр. На нее может влиять вибрация трубопровода или оборудования, температура, уровень влажности и другие параметры.

Также точность измерения давления зависит от еще одной характеристики манометра — величины его вариации, которую определяют в ходе поверки. Это максимальная разница показаний измерителя, выявленная по результатам нескольких измерений.

Величина вариации в значительной мере зависит от конструкции манометра, а именно от способа уравновешивания, которое может быть жидкостным (давлением столба жидкости) или механическим (пружиной). Механические манометры имеют более выраженную вариацию, что часто обусловлено дополнительным трением при плохой смазке или износе деталей, потере упругости пружины и другими факторами.

Пример 2

Если речь идет не просто о подсчетах событий, а об измерении непрерывной величины, то там статистическая погрешность тоже присутствует, но вычисляется она чуть сложнее.

Предположим, вы хотите измерить массу какой-то новой, только что открытой частицы. Частица эта рождается редко, и у вас из всей статистики набралось лишь четыре события рождения этой частицы. В каждом событии вы измерили ее массу, и у вас получилось четыре результата (мы здесь намеренно опускаем возможные систематические погрешности): 755 МэВ, 805 МэВ, 770 МэВ, 730 МэВ. Теперь можно взять область масс от 700 до 850 МэВ и поставить на ней эти четыре точки (рис. 1). Поскольку каждая точка отвечает одному событию с данной массой, мы каждой точке присваиваем погрешность ±1 событие. То, что массы разные, — совершенно нормально, поскольку у нестабильных частиц есть некая «размазка» по массе. Поэтому, согласно теории, ожидается некая плавная кривая, и когда физики говорят про массу нестабильной частицы, они имеют в виду положение максимума этой кривой. Она тоже показана на рис. 1, но только положение и ширина этой кривой заранее неизвестны, они определяются по наилучшему соответствию с данными.

Из-за того что данных очень мало, мы можем провести эту кривую так, как показано на рисунке, а можем и немножко сместить ее в стороны — и так, и эдак будет осмысленное совпадение. Вычислив среднее значение массы, можно получить положение пика этой кривой, а также его неопределенность: 765 ± 15 МэВ. Эта неопределенность целиком и полностью обязана разным результатам измерений, она и является статистической погрешностью измерения.

Относительная погрешность

Если внимательно проанализировать определения, то становится очевидно, что ни абсолютная погрешность, ни предельная абсолютная погрешность не могут хорошо характеризовать точность, с которой выполнены измерения или вычисления. Например, если мы вычисляем или измеряем расстояние от Земли до Солнца, то абсолютная погрешность в 1 метр – это ничтожно мало. Но если мы измеряем рост человека, то точно такая же абсолютная погрешность в 1 м – это недопустимо много.

Оценить насколько «хороша» полученная абсолютная погрешность позволяет величина, называемая относительной погрешностью δ. Она равна отношению абсолютной погрешности к модулю самой величины:

δ = Δ / |А|

Аналогично определяется предельная относительная погрешность:

δа = Δа / |А|

Относительные погрешности часто вычисляются в процентах, то есть:

δ = Δ / |А| * 100%

Устройство грузовика

На фото видно, что транспортное средство имеет стандартное для малотоннажных грузовиков устройство. На базовой модели устанавливались моторы собственного изготовления ГАЗ-562 и минский ММЗ-245. Внедрение американского двигателя Cummins позволило увеличить грузоподъемность «Валдая» до 4 т. Более современные силовые установки IVECO отличаются чистотой выхлопа, соответствующего стандартам ЕВРО-4. Большинство изделий оснащалось именно моторами Cummins китайской сборки. Данная продукция имеет высокие эксплуатационные качества при низкой цене.

Для облегчения запуска в холодное время года топливная система оборудована подогревом, на заказ устанавливается нагревательные элементы в топливном фильтре, поддоне и рубашке радиатора. Все модели ГАЗ-33106 оборудованы ручной КПП с валом отбора мощности. Сцепление дисковое, сухое, диафрагменное. Редуктор одноступенчатый гипоидный с передаточным числом 2,4. При изготовлении рамы металл 6 мм, использованы лонжероны с переменным профилем.

Валдай используется также в качестве эвакуатора

Подвеска стандартная для малотоннажных грузовиков — листовые рессоры с витыми ушками на концах и сайлентблоки в местах соединения с рамой. Отсутствие подрессорников позволило придать автомобилю дополнительную устойчивость и плавность хода.

Дисковые тормоза с пневматическим приводом установлены на обеих осях. Новая система надежнее, удобнее в обслуживании, позволяет работать с прицепами с пневматическими тормозами.

Кабина собственного производства оснащена удобными пневматическими креслами, панорамной панелью и электронной педалью газа. Внешний вид характеризуется расширенными крыльями, оригинальным радиатором и мощным бампером со стальным сердечником.

Общие сведения о погрешностях

Точность полученного результата может быть охарактеризована при помощи разных видов погрешностей:

  • абсолютная погрешность – разность между истинным (точным) значением величины и тем значением, которое было получено в ходе измерений;
  • относительная погрешность – отношение абсолютной погрешности к истинному (точному) значению измеряемой величины; обычно эта ошибка выражается в процентах;
  • приведенная погрешность – отношение абсолютной ошибки к нормирующему значению, которое имеет прибор, с помощью которого было выполнено измерение;
  • основная погрешность – ошибка результата, которую обеспечивает прибор, выполняющий измерения при нормальных условиях (для каждого прибора эти условия свои);
  • дополнительная погрешность – ошибка результата, которую обеспечивает прибор, работающий в условиях, отличающихся от нормальных условий;
  • систематическая погрешность – постоянно возникающая ошибка, связанная с особенностями прибора;
  • случайная погрешность – ошибка, появляющаяся из-за действия случайных (непредсказуемых) факторов;инструментальная погрешность – ошибка, которая связана с ошибками, допущенными в процессе изготовления прибора;
  • методическая погрешность – ошибка, обусловленная особенностями выбранного метода измерений;
  • субъективная погрешность – ошибка, обусловленная квалификацией и личными характеристиками персонала, выполняющего измерения;
  • статистическая погрешность – ошибка, которая рассчитывается на основе теории вероятностей;
  • статическая погрешность – ошибка, которая появляется при измерении неизменных величин;
  • динамическая погрешность – ошибка, которая появляется при измерении меняющихся во времени величин.

Эти и другие виды погрешностей изучаются в рамках теории погрешностей.

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Как определить

Приближенное значение определяется следующим образом:

Число а называется приближенным значением некоторого числа А, если его значение несколько отклоняется от значения А. При этом:

  • если а < А, то а – это приближение по недостатку;
  • если а > А, то а – это приближение по избытку.

Разность между числом А и его приближенным значением а называют ошибкой или погрешностью. Ошибку приближенной величины а обозначают как Δа:

Δа = А — а

Модуль разности между величиной и ее приближенным значением называется абсолютной погрешностью. Ее часто обозначают греческой буквой Δ:

Δ = |А — а|

Запись приближенного результата при этом имеет вид:

а ± Δ

В простейших случаях, когда значение величины А известно точно, абсолютная погрешность вычисляется просто. Рассмотрим такой пример:

Пусть точное значение А = 2/625 = 0,0032, а его приближенное значение а = 0,003.

В этом случае абсолютная погрешность будет:

Δ = |0,0032 — 0,003| = 0,0002

Но на практике такие простые задачи встречаются редко. Гораздо чаще точное значение А вообще неизвестно. В этих случаях абсолютная погрешность определяется при помощи разных способов, в зависимости от условий конкретной задачи.

Если речь идет об измерениях, то под абсолютной погрешностью понимают разность между показаниями измерительного прибора и истинным значением величины.

АПС пистолет Стечкина патрон калибр 9 мм. Устройство

Статистическая погрешность: чуть подробнее

Предположим, что ваш детектор может очень точно измерить какую-то величину в каждом конкретном столкновении. Это может быть энергия или импульс какой-то родившейся частицы, или дискретная величина (например, сколько мюонов родилось в событии), или вообще элементарный ответ «да» или «нет» на какой-то вопрос (например, родилась ли в этом событии хоть одна частица с импульсом больше 100 ГэВ).

Это конкретное число, полученное в одном столкновении, почти бессмысленно. Скажем, взяли вы одно событие и выяснили, что в нём хиггсовский бозон не родился. Никакой научной пользы от такого единичного факта нет. Законы микромира вероятностны, и если вы организуете абсолютно такое же столкновение протонов, то картина рождения частиц вовсе не обязана повторяться, она может оказаться совсем другой. Если бозон не родился сейчас, не родился в следующем столкновении, то это еще ничего не говорит о том, может ли он родиться вообще и как это соотносится с теоретическими предсказаниями. Для того, чтобы получить какое-то осмысленное число в экспериментах с элементарными частицами, надо повторить эксперимент много раз и набрать статистику одинаковых столкновений. Всё свое рабочее время коллайдеры именно этим и занимаются, они накапливают статистику, которую потом будут обрабатывать экспериментаторы.

В каждом конкретном столкновении результат измерения может быть разный. Наберем статистику столкновений и усредним по ней результат. Этот средний результат, конечно, тоже не фиксирован, он может меняться в зависимости от статистики, но он будет намного стабильнее, он не будет так сильно прыгать от одной статистической выборки к другой. У него тоже есть некая неопределенность (в статистическом анализе она так и называется: «неопределенность среднего»), но она обычно небольшая. Вот эта величина и называется статистической погрешностью измерения.

Итак, когда экспериментаторы предъявляют измерение какой-то величины, то они сообщают результат усреднения этой величины по всей набранной статистике столкновений и сопровождают его статистической погрешностью. Именно такие средние значения имеют физический смысл, только их может предсказывать теория.

Есть, конечно, и иной источник статистической погрешности: недостаточный контроль условий эксперимента при повторном измерении. Если в физике частиц этот источник можно попытаться устранить, по крайней мере, в принципе, то в других разделах естественных наук он выходит на первый план; например, в медицинских исследованиях каждый человек отличается от другого по большому числу параметров.

Классы точности приборов

По приведенной погрешности (по классу точности) приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными

(от англ. precision – точность). В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические).

Класс точности прибора указывается на шкале прибора. Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.Производитель, выпускающий прибор, гарантирует относительную погрешность измерения данным прибором, равную классу точности (приведенной погрешности) прибора при измерении величины, дающей отброс указателя на всю шкалу. Определив по шкале прибора класс точности и предельное значение, легко рассчитать его абсолютную погрешность ΔX = ± гXпр / 100%, которую принимают одинаковой на всей шкале прибора. Знаки «+» и «–» означают, что по-грешность может быть допущена как в сторону увеличения, так и в сторону уменьшения от действительного значения измеряемой величины.

При использовании приборов для конкретных измерений редко бывает так, чтобы измеряемая величина давала отброс стрелки прибора на всю его шкалу. Как правило, измеряемая величина меньше. Это увеличивает относительную погрешность измерения. Для оптимального использования приборов их подбирают так, чтобы значения измеряемой величины приходились на конец шкалы прибора, это уменьшит относительную погрешность измерения и приблизит ее к классу точности прибора. В тех случаях, когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector